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3 Dipartimento di Fisica, 57 Corso Italia, and INFN-LNS, 44 Via Santa Sofia, 95125 Catania, Italy
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Abstract. Brueckner calculations including a microscopic three-body force have been extended to isospin-
asymmetric nuclear matter. The effects of the three-body force on the equation of state and on the single-
particle properties of nuclear matter are discussed with a view to possible applications in nuclear physics
and astrophysics. It is shown that, even in the presence of the three-body force, the empirical parabolic law
of the energy per nucleon vs. isospin asymmetry β = (N −Z)/A is fulfilled in the whole asymmetry range
0 ≤ β ≤ 1 up to high densities. The three-body force provides a strong enhancement of the symmetry
energy which increases with density in good agreement with the predictions of relativistic approaches. The
Lane’s assumption that proton and neutron mean fields linearly vary vs. the isospin parameter is violated
at high density due to the three-body force, while the momentum dependence of the mean fields turns out
to be only weakly affected. Consequently, a linear isospin split of the neutron and proton effective masses
is found for both cases with and without the three-body force. The isospin effects on multifragmentation
events and collective flows in heavy-ion collisions are briefly discussed along with the conditions for direct
URCA processes to occur in the neutron star cooling.

PACS. 25.70.-z Low and intermediate energy heavy-ion reactions – 13.75.Cs Nucleon-nucleon interactions
(including antinucleons, deuterons, etc.) – 21.65.+f Nuclear matter – 24.10.Cn Many-body theory

1 Introduction

The equation of state (EOS) of neutron-rich matter is a
source of important theoretical predictions on the proper-
ties of neutron stars, heavy-ion collisions (HIC) and nuclei
at the neutron drip line [1]. The general interest has been
focussed mainly on the symmetry energy, including its de-
pendence on the baryonic density. Studies of neutron star
cooling [2], spin-polarized states [3], collective flows and
isospin distillation in HIC [4–6] have stressed that those
phenomena are very sensitive to the values of the symme-
try energy in the respective density domains. The EOS
of isospin-asymmetric nuclear matter (ANM) has been re-
cently studied in the framework of the Brueckner-Bethe-
Goldstone (BBG) theory [7,8]. The convergence of the
BBG hole line expansion has been assessed in recent times
with high accuracy [9], even if the saturation properties of
nuclear matter are not reproduced. It is commonly recog-
nized that the missing saturation is due to the modelling
of nucleons as structureless particles interacting via a bare
two-body force (2BF). One thus has to introduce three-
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body forces (3BF). The first microscopic model of 3BF was
the Fujita-Miyazawa model [10] where the isobar ∆(1232)
is excited in a pion exchange interaction between two nu-
cleons. The model was later extended to the N(1440)
Roper resonance [11]. It has been also recognized that the
main relativistic effect introduced by the Dirac-Brueckner
approach is the excitation of the negative-energy states
of the Fermi sea which can be described in terms of a
3BF [12] as well.

The above-mentioned 3BF components have a strong
saturating effect as already shown by a Brueckner-
Hartree-Fock (BHF) calculation using the Paris potential
as 2BF [11]. This 3BF has been re-adopted in ref. [13] in
combination with the Argonne V18 [14] as two-body com-
ponent. In ref. [15] the EOS of pure neutron matter was
discussed and a preliminary prediction was given for the
symmetry energy based on the shift between the energy
of pure neutron matter and symmetric nuclear matter.
However, one may argue that 3BF could modify the β2

law fulfilled by the binding energy of ANM, especially at
high density, and higher-order terms in the β expansion
could significantly limit the role played by the symmetry
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Fig. 1. Diagrams of the microscopic 3BF adopted in the
present calculation (see ref. [11]). Diagram (c) was not in-
cluded.

energy in describing the isospin effects. These considera-
tions require to extend the calculation of the EOS to the
full asymmetry range 0 < β < 1 and up to high enough
baryonic density. In this paper we will present the results
of such a calculation. After describing the model of 3BF
(sect. 2) we shall focus on the 3BF effects on binding en-
ergy, symmetry energy and single-particle properties of
ANM (sect. 3). Then a few direct applications in the neu-
tron star cooling and in the isospin properties of HIC will
be shortly discussed along with a comparison with other
approaches (sect. 4).

2 Isospin-dependent 3BF

The microscopic 3BF adopted in the present calculation
is based on the meson exchange current approach. It is
described in full detail in ref. [11]. The new meson param-
eters calculated to meet the self-consistent requirement
with the adopted AV18 2BF are reported in ref. [13].

It has been shown [11,13] that the main contributions
to 3BF arise from the two-meson exchange part of the
nucleon-nucleon (NN) interaction medium modified by the
intermediate virtual excitation of nucleon resonances (iso-
bar ∆(1232) and Roper N(1440)) (fig. 1a) and from the
two-meson exchange part with nucleon-antinucleon virtual
excitations (fig. 1d). The latter contains the relativistic
effects associated with the dressed spinors of the Dirac-
Brueckner approach [16]. The terms associated with the
non-linear π-nucleon coupling required by the chiral sym-
metry [17] play a minor role, especially above the satu-
ration density, where heavy mesons (σ and ω) are domi-
nating over the 2π-3BF (fig. 1b, diagrams without heavy
mesons). The contribution due to meson-meson coupling

(fig. 1c) is negligible [11] and was therefore not consid-
ered in the present calculations. In the context of non-
relativistic approaches phenomenological 3BF have also
been introduced [18] in the calculations of nuclear mat-
ter. They are modelled according to the saturation prop-
erties of nuclear matter and/or the binding energies of
light nuclei. Good agreement between microscopic and
phenomenological 3BF is found only when the latter is
treated within the Brueckner approach [19].

The general Brueckner formalism for ANM with 2BFs
is described in ref. [8]. The rigorous procedure to include
3BF would require to solve the Bethe-Faddeev equation
with a 3BF much the same as already done to calculate
the three-body clusters in the BBG hole line expansion [9].
Since at the present time this appears a formidable task,
we follow a simplified procedure based on converting the
3BF into an effective two-body force via a suitable inte-
gration over the degrees of freedom of the third nucleon.
The integral is weighted over the correlation function of
the third nucleon with respect to the two others [11,13].
The effective 2BF for ANM is defined as
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The function ητ1τ2(r) is the average over spin and mo-
menta in the Fermi sea of the defect function of which
only the most important partial-wave components have
been included, i.e., the 1S0 and 3S1 partial waves.

The transformation of the 3BF to an effective 2BF
entails a self-consistent coupling between the 3BF and
the Brueckner procedure of solving the Brueckner-Bethe-
Goldstone equations. One first calculates the correlation
function with only the 2BF and then builds up the effec-
tive 3BF which in turn is added to the 2BF, and again the
correlation function. This procedure is repeated up to the
convergence is reached. As previously mentioned the bare
2BF adopted in the calculations is the charge-dependent
force AV18. The partial-wave expansion of the full inter-
action has been truncated at lmax = 6.

3 Numerical results

The EOS of ANM has been calculated spanning the whole
asymmetry range with a step-size ∆β = 0.2 in a density
domain up to 0.45 fm−3. The case of symmetric nuclear
matter (β = 0) is discussed in ref. [15] (the saturation
properties are reported in table 1). The results for ANM
are displayed in fig. 2 for both cases with (left panel) and
without (right panel) 3BF. In this figure the energy shift
for asymmetric-to-symmetric nuclear matter is plotted vs.
β2. The individual runs (symbols in the figure) are de-
picted along with their linear fits (solid lines) performed
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Fig. 2. Energy per nucleon of asymmetric nuclear matter in the range 0 ≤ β2 ≤ 1 at four densities as compared to the parabolic
fits (straight lines) obtained from the first three values of β (0.0, 0.2, 0.4). Left panel: BHF predictions using AV18 plus the
3BF. Right panel: BHF results with only pure AV18 2BF.

Table 1. Equilibrium density of asymmetric nuclear matter,
incompressibility and energy per nucleon at equilibrium den-
sity corresponding to four different values of the asymmetry β.
Density units are fm−3, K and EA units are MeV.

AV18 + 3BF AV18

β ρeq K(ρeq) EA(ρeq) ρeq K(ρeq) EA(ρeq)

0.0 0.198 207.84 −15.05 0.265 232.35 −18.25
0.2 0.193 195.34 −13.82 0.259 228.54 −16.74
0.4 0.165 142.33 −9.93 0.226 177.49 −12.38
0.6 0.120 85.28 −4.44 0.172 96.1 −5.89

with only the first three values of the asymmetry parame-
ter β. From the comparison between the two sets of calcu-
lations one may notice that, despite its strongly density-
dependent repulsive effect, the 3BF does not violate the β2

law fulfilled already with only 2BF. The rather good agree-
ment between the symbols and the corresponding lines
(the maximum deviation is 6%) indicates the high quality
of the β2 law up to the largest densities. This is a quite as-
tonishing result because the 3BF introduces a strong den-
sity and isospin dependence, making the in-medium NN
interaction quite different from the bare 2BF. On the other
hand, this is indeed a quite desirable result for two rea-
sons. First, this is in agreement with previous studies [7,
8,20,21] using a charge-independent 2BF and provides a
strong support for using the empirical β2 law to describe
isospin effects. Second, it imposes also strict theoretical
constraints on the phenomenological nuclear forces when
extended to ANM. We have in mind the Skyrme forces
which have been fit at the saturation point of symmetric
nuclear matter and include an effective density-dependent
term to simulate the effects of 3BF.

In table 1 the saturation properties of ANM are shown
with and without 3BF. One may just notice that 3BF
reduces the compression modulus at equilibrium density
despite the strong enhancement of the curvature of the
corresponding EOS. This is due to the fact that it is also

proportional to the square of the saturation density, which
turns out to be very much reduced.

The symmetry energy is defined as

Esym(ρ) =
1
2

[
∂2EA(β, ρ)

∂β2

]
β=0

. (2)

Due to the simple β2 law the symmetry energy can be
equivalently calculated as the difference between the en-
ergy per nucleon of pure neutron matter and symmetric
nuclear matter, i.e.,

Esym(ρ) = EA(ρ, 1) − EA(ρ, 0) . (3)

Figure 3 shows the effect of the 3BF on the symmetry
energy in the density domain considered in this study. At
the saturation density the two values do not significantly
differ from one another: 30.71 MeV (3BF included) and
29.28 MeV (no 3BF). Both are in good agreement with the
empirical value 30. ± 4 MeV extracted from the nuclear
mass table [22]. Above ρeq the 3BF brings about a strong
enhancement of the symmetry energy since it is strongly
repulsive at high density. Both curves, with and without
the 3BF, have been parametrized by simple power laws as
follows:

– BHF with pure AV18 2BF:

Esym = 30.7u0.58 ; (4)

– BHF using AV18 plus the 3BF:

Esym = 30.71u0.6 , u ≤ 1

= 30.71 + 18.42(u− 1) + 9(u− 1)2 , u > 1 ,
(5)

where u = ρ/ρ0, and ρ0 = 0.17 fm−3 is the empirical
saturation density. The above simple relations, plotted in
fig. 3 (right panel), may be useful in HIC simulations.

In fig. 3 (left panel) Esym vs. density is compared
with other approaches. Despite the overall agreement with
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Fig. 3. Symmetry energy vs. density. The left panel shows a comparison among different approaches: the BHF predictions
with 3BF (upper solid curve) and without 3BF (lower solid curve) are obtained from the slopes of fig. 2 (while symbols are
the values approximated by eq. (3)); the long-dashed curve corresponds to the result of the DBHF approach from ref. [20]. The
short-dashed curve is that of BHF calculation using the phenomenological Urbana 3BF in ref. [19], where Esym is obtained from
eq. (3). The dotted curve is the prediction of the relativistic Hartree-Fock approach taken from ref. [23]. The right panel shows
simple parametrizations of the present results with (solid line) and without (dashed line) 3BF.

Fig. 4. Proton and neutron mean fields in asymmetric nuclear matter at ρ = 0.17 fm−3 for five different asymmetries. The left
part shows the proton mean-field (upper panel) and the neutron one (lower panel), respectively, vs. momentum using AV18 plus
the 3BF. The right part shows the corresponding results without the 3BF.

the predictions of the relativistic mean-field (RMF) the-
ory [23] and the Dirac-Brueckner-Hartree-Fock approach
(DBHF) [20], the density dependence is found to be rather
different. Both RMF and DBHF theories predict an al-
most linear variation of Esym vs. density. Instead, in the
present BHF calculation with the 3BF, Esym slowly in-
creases at relatively low density, say from ρ � 0.03 fm−3

to ρ � 0.25 fm−3. Such a slow variation is also found in
a density region up to ρ � 0.2 fm−3 in ref. [24] from the
three-loop approximation of chiral perturbation theory. In
this density region, the shape of Esym plays an important
role in the study of the isospin effects in HIC at interme-
diate energy as discussed later. On the contrary, in the
relatively high-density domain, i.e., ρ ≥ 0.3 fm−3, the

present calculation predicts a steeper density dependence
than DBHF and RMF.

Due to the isospin effect, the proton and neutron
single-particle potentials are different. As discussed in
ref. [8], where only the charge-independent AV14 2BF was
used, the attractive T = 0 SD channel contribution in
the two-body NN interaction mainly drives the isospin
dependence of the proton and neutron mean fields. As
a result, the proton mean field becomes more attractive
and the neutron one more repulsive with increasing asym-
metry. In the BHF approximation both proton and neu-
tron mean fields vary linearly with the asymmetry pa-
rameter β, which is in keeping with the β2-dependence of
the energy per nucleon. A linear potential was introduced
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Fig. 5. The same as in fig. 4 for ρ = 0.34 fm−3.

Fig. 6. Left panel: Isospin variation of proton and neutron mean fields at a fixed momentum k = 0 for two densities ρ = 0.17
and 0.34 fm−3. Right panel: isospin dependence of proton and neutron effective masses calculated at their respective Fermi
momenta. The results in both panels are calculated using AV18 plus the 3BF.

phenomenologically long ago [25] and is referred to as
the Lane potential. Due to the importance of the single-
particle properties such as mean field and effective mass
in HIC physics [26,27], it is of some interest to explore
the effect of the 3BF on such quantities. The proton and
neutron mean fields are shown as a function of momentum
k at different asymmetries β = 0, 0.2, 0.4, 0.6, 0.8 in fig. 4
for the saturation density ρ = 0.17 fm−3 and in fig. 5
for high density ρ = 0.34 fm−3. In both figures the left
panels display the results using AV18 plus 3BF while the
right panels give the results using pure AV18. As expected,
the 3BF adds a repulsive contribution to both proton and
neutron mean fields at all asymmetries. At relatively low
density (fig. 4), the proton mean field with 3BF becomes
more attractive, which is in agreement with the 2BF pre-
diction. However, the validity of the linear Lane assump-
tion is broken by 3BF as more clearly seen in the left
panel of fig. 6, where the isospin variation of the proton

and neutron mean fields are plotted at momentum k = 0.
At relatively high density (figs. 5 and 6), the 3BF effect be-
comes much more pronounced and in fact it brings about
a strong deviation from the linear Lane assumption. The
neutron mean field rises up more rapidly as compared to
the results with pure AV18. The same happens to the pro-
ton potential which at a certain asymmetry becomes even
more repulsive. This remarkable result can be explained
by the competition between the isospin dependence of the
3BF and the contribution from the attractive T = 0 SD
channel. As increasing isospin asymmetry the 3BF repul-
sion starts to compete with the T = 0 SD channel 2BF
attraction, and becomes the dominant one at high enough
density.

The effective mass for neutron or proton is defined
as [28]

m∗
τ (k)
m

=
k

m

(
dετ (k)

dk

)−1

, (6)
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where ετ (k) = �
2k2/2m + Uτ (k) is the neutron (τ = n)

or proton (τ = p) single-particle energy. The momentum
dependence of m∗ is featured by a wide bump inside the
Fermi sphere due to the high-probability amplitude for
particle-hole excitations near the Fermi surface. In fact
such a bump originates from the energy dependence of
the mass operator and is related to the E-mass as dis-
cussed in ref. [28]. The isospin dependence of the proton
and neutron effective masses at their respective Fermi mo-
menta kp

F and kn
F are given in the right panel of fig. 6. The

3BF does not affect the linear scissor-shaped behavior ob-
served in the previous calculations using a pure 2BF [7,8].
One should notice that the isospin effect on neutron and
proton effective masses in the Brueckner approach goes
the other way around than in the RMF approach [23].
This discrepancy is to be understood taking also into ac-
count the different definitions of effective mass in the two
approaches.

4 Summary and discussion

In the present work the microscopic 3BF based on the
meson exchange current approach has been extended and
applied to isospin ANM in the framework of the Brueckner
theory. The 3BF effects on the isospin dependence of both
the nuclear EOS and single-particle properties have been
investigated.

The obtained results confirm the validity of the β2 law
for the energy per nucleon in the entire range of isospin
asymmetry and up to high density, in spite of the strong
isospin and density dependence of the 3BF. As a conse-
quence, the isospin effects in ANM are just driven by the
symmetry energy as in the case with only the 2BF. The
vanishing of higher powers in the β2 expansion also sup-
ports the simple recipe frequently adopted to extract the
symmetry energy from the two limiting cases of symmetric
nuclear matter and pure neutron matter. It also constrains
theoretically the phenomenological interactions, such as
the Skyrme forces which take into account the effect of
3BF by a density-dependent term.

As expected, the 3BF improves the saturation prop-
erties of symmetric nuclear matter by shifting the equi-
librium density close to the empirical value. At relatively
low density, the 3BF effect on the nuclear symmetry en-
ergy is quite small. On the contrary, at high density, it
brings about a strong enhancement and consequently the
symmetry energy rises with density more steeply than the
corresponding 2BF prediction. The non-linear increase of
symmetry energy at high density has also been observed
in a recent relativistic Hartree-Fock calculation [23] as
the “Fock” exchange effect of the non-linear scalar self-
interactions. But in the same ref. [23] it is also shown that
at sub-nuclear densities the Fock contribution could result
in a softening of the symmetry potential term.

The density dependence of the symmetry energy has
been parametrized for the sake of the application to HIC
with very neutron-rich ions. It has already been shown
that isospin fractionation [4,29] in multifragmentation
events is very sensitive to the density dependence of Esym

Fig. 7. Proton fraction in β-equilibrium nuclear matter cal-
culated in the BHF approximation with 2BF (AV18) and 2BF
plus 3BF (AV18+3BF) in comparison with a variational calcu-
lation using Urbana 2BF and 3BF (UV14+UV II). The dashed
horizontal line is the threshold for direct URCA processes es-
timated in ref. [34].

in the low-density region. In particular, in ref. [30] it is
shown that using an isospin stiff nuclear EOS with a sym-
metry energy curvature equal to −69 MeV (very close
to the present value of −66 MeV) leads to a value for
the liquid-to-gas isospin asymmetry ratio which is con-
sistent with the experimental prediction [5]. An isospin
scaling has been proposed in multifragmentation events
of HIC, which turns out to be also very sensitive to the
density dependence of Esym. Using the expanding evap-
orating source model and adopting for Esym the simple
parametrization C ·(ρ/ρ0)γ the fragment data can be fairly
well reproduced using γ = 0.6 [31], which coincides with
the fit of our microscopic value (cf. eq. (5)).

The preequilibrium particle emission [32,33] and col-
lective flows [4,6] can instead probe the symmetry energy
in the range of high density, say up to two times the satu-
ration density. The calculation of the particle production
rates supports an isospin stiff EOS in agreement with our
prediction.

In the high-density range the symmetry energy is also
relevant to the study of the neutron star properties such as
the cooling mechanism. In fact, a steep increase of Esym

with density favours the direct URCA processes [2]. In
fig. 7 the proton fraction is reported for β-equilibrium nu-
clear matter in different approximations. The threshold of
direct URCA processes is only reached by the results with
3BF and this happens at a reasonably low value of the
neutron star density.

As to the single-particle properties, the effect of the
3BF is to add an extra repulsion to both proton and
neutron mean fields so that the linear Lane assumption
breaks down slightly around the saturation density but
quite strongly at high density. However, the scissor-shaped
behavior of the proton and neutron effective masses vs. β
remains unchanged being the momentum dependence of
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the mean fields rather insensitive to 3BF. In a calcula-
tion not reported here it was found that the 3BF affects
only slightly the rearrangement contribution to the nu-
clear mean field and cannot improve the fulfillment of
Hughenoltz-Van Hove theorem (see ref. [8]). This requires
to go beyond the BHF approximation in the expansion of
mass operator that is a work still in progress.
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